分类激活图(CAM),利用分类结构来生成像素定位图,是弱监督物体定位(WSOL)的关键机制。但是,CAM直接使用对图像级特征训练的分类器来定位对象,从而更喜欢辨别全局歧视性因素,而不是区域对象提示。因此,在将像素级特征馈入此分类器时,只有判别位置才能激活。为了解决此问题,本文详细阐述了一种称为Bagcams的插件机制,以更好地投射训练有素的本地化任务分类器,而无需完善或重新训练基线结构。我们的手袋采用了拟议的区域定位器(RLG)策略来定义一组区域本地化,然后从训练有素的分类器中得出。这些区域本地化可以被视为基础学习者,只能辨别出针对本地化任务的区域对象因素,而我们的袋子可以有效地加权其结果以形成最终的本地化图。实验表明,采用我们提出的口袋可以在很大程度上提高基线WSOL方法的性能,并在三个WSOL基准上获得最先进的性能。代码可在https://github.com/zh460045050/bagcams上发布。
translated by 谷歌翻译
通过使用图像级分类掩模监督其学习过程,弱监督对象本地化(WSOL)放宽对对象本地化的密度注释的要求。然而,当前的WSOL方法遭受背景位置的过度激活,并且需要后处理以获得定位掩模。本文将这些问题归因于背景提示的不明显,并提出了背景感知分类激活映射(B-CAM),以便仅使用图像级标签同时学习对象和背景的本地化分数。在我们的B-CAM中,两个图像级功能,由潜在背景和对象位置的像素级别功能聚合,用于从对象相关的背景中净化对象功能,并表示纯背景样本的功能,分别。然后基于这两个特征,学习对象分类器和背景分类器,以确定二进制对象本地化掩码。我们的B-CAM可以基于提出的错开分类损失以端到端的方式培训,这不仅可以改善对象本地化,而且还抑制了背景激活。实验表明,我们的B-CAM在Cub-200,OpenImages和VOC2012数据集上优于一级WSOL方法。
translated by 谷歌翻译
目的:深度神经网络(DNN)已被广泛应用于医学图像分类中,从其在医学图像中的强大映射能力中受益。但是,这些现有的基于深度学习的方法取决于大量精心标记的图像。同时,标记过程中不可避免地引入噪声,从而降低了模型的性能。因此,制定强大的培训策略以减轻医学图像分类任务中的标签噪声是很重要的。方法:在这项工作中,我们提出了一种新颖的贝叶斯统计数据指导标签翻新机制(BLRM),以防止过度适合嘈杂的图像。 BLRM利用贝叶斯统计数据和指定时间加权技术中的最大后验概率(MAP)来选择性地纠正嘈杂图像的标签。激活BLRM时,训练时期逐渐纯化训练图像,从而进一步改善分类性能。结果:关于合成噪声图像(公共OCT和Messidor数据集)和现实世界嘈杂图像(Animal-10N)的全面实验表明,BLRM选择性地翻新了噪声标签,从而凝结了噪声数据的不良影响。同样,与DNN集成的抗噪声BLRM在不同的噪声比下有效,并且独立于骨干DNN架构。此外,BLRM优于抗噪声的最新比较方法。结论:这些研究表明,所提出的BLRM能够缓解医学图像分类任务中的标签噪声。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
translated by 谷歌翻译
With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
translated by 谷歌翻译